Viral Inactivation of Pooled Human Platelet Lysate Using Gamma Irradiation

Samantha Reilly, Patrick Patterson, Yiwei Ma, Stephen Fischer, Meghan Samberg
Compass Biomedical, Hopkinton, MA USA

Adantages of human platelet lysate (hPL)
- Human platelet lysate (hPL) is a xenogeneic-free, growth factor-rich cell culture supplement that can replace fetal bovine serum (FBS) for clinical cell manufacturing.
- Use of hPL over FBS to manufacture cells has the following advantages:
 - Eliminates possibility for patient immunological reactions to animal-derived products.
 - Eliminates possibility for transmission of animal-derived viruses or prions to cell therapy product.
 - Eliminates ethical concerns associated with harvesting of FBS from pregnant cows during slaughter.
 - Promotes faster proliferation of human mesenchymal stromal cells (hMSCs), human adipose-derived stromal cells (hASCs), and a range of other cell types, increasing the efficiency of manufacturing and leading to significant cost savings.

Compass Biomedical’s PLUS™ hPL is manufactured using expired, transfusion-grade platelets in accordance with current good manufacturing practices (cGMPs) under an ISO 9001-compliant quality system.

Problem: Potential human virus contamination
- All platelet units used in the manufacturing of PLUS™ hPL are obtained from FDA-registered blood banks and test negative for Hepatitis B, Hepatitis A, HIV Type 1 & 2, Human T-Lymphotropic Virus Type 1 & 2, Zika virus, and syphilis.
- Despite testing, there is a slight risk for contamination with unknown and emerging viruses; regulatory agencies across the globe are beginning to require viral removal or inactivation for blood-derived ancillary materials like hPL.

Solution: Viral Inactivation using gamma irradiation
- A variety of methods exist for destroying viruses in incoming platelet units or in manufactured hPL, but gamma irradiation is the most feasible option.

<table>
<thead>
<tr>
<th>Method</th>
<th>Mechanism</th>
<th>Target</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma irradiation</td>
<td>Ionizing radiation</td>
<td>Manufactured hPL product</td>
<td>Effective against a wide range of viruses; suitable for frozen products.</td>
</tr>
<tr>
<td>Electron beam irradiation</td>
<td>Ionizing radiation</td>
<td>Manufactured hPL product</td>
<td>Difficult for frozen products (low penetration depth)</td>
</tr>
<tr>
<td>Solvent/detergent (S/D)</td>
<td>Disrupts lipid membrane of enveloped viruses</td>
<td>Manufactured hPL product</td>
<td>S/D may alter hPL performance; not effective against non-enveloped viruses</td>
</tr>
<tr>
<td>Low pH</td>
<td>Denatures viral proteins</td>
<td>Manufactured hPL product</td>
<td>May denature growth factors and other proteins in hPL</td>
</tr>
<tr>
<td>UVA/Amotosalen (Intercept®, Cerus)</td>
<td>Photochecmicals croslink nuclei acids</td>
<td>Including platelet units</td>
<td>Photochecmicals may alter hPL performance; platelet units not widely available</td>
</tr>
<tr>
<td>UVB/Riboflavin (Mirasol®, Terumo)</td>
<td>Photochecmicals break nuclei acids</td>
<td>Including platelet units</td>
<td>Photochecmicals may alter hPL performance; platelet units not widely available</td>
</tr>
<tr>
<td>UVC (Teralx®, MacoPharma)</td>
<td>Short-wave UV light blocks transcription</td>
<td>Including platelet units</td>
<td>Platelet units not widely available</td>
</tr>
</tbody>
</table>

Goal of this project
- This project sought to confirm the inactivation of model viruses using a standard dose of gamma irradiation and to verify that gamma exposure does not significantly compromise product composition or performance.

Method

- **Gamma irradiation**: PLUS™ hPL was gamma irradiated at a dose rate of 25 - 33 kGy. Product was kept frozen on dry ice throughout shipping and irradiation. A dose mapping study was first performed on surrogate materials to determine the actual delivered dose to the product in the shipping container.

Physicochemical profile:
- pH, osmolality, and total protein concentration were determined using standard methods.
- Concentrations of important growth factors (VEGF, FGF-basic, EGF, and PDGF-BB) were determined using ELISA.

Cell Culture:
- PLUS™ hPL performance was assessed based on the ability to promote growth of passage 3 bone marrow-derived hMSCs. Cells were cultured in eMEM supplemented with gamma irradiated or non-irradiated PLUS™ hPL or hMSC-qualified fetal bovine serum (FBS) (all at 10% v/v).

Viral inactivation:
- Viruses were spiked into irradiated and non-irradiated PLUS™ hPL at 5% v/v. Viral titers were determined using plaque assays or tissue culture infective dose (TCID₅₀).
- Viral log₁₀ reduction factors (LRFs) were calculated as: LRF = log₁₀ (volume*pre-gamma liter/volume*post-gamma liter)

Gamma irradiation has minimal impact on hPL composition and performance

Gamma irradiation inactivates model viruses

<table>
<thead>
<tr>
<th>Virus</th>
<th>Family</th>
<th>Genome</th>
<th>Envelope</th>
<th>Size (nm)</th>
<th>Log₁₀ Reduction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encephalomyocarditis virus (EMCV)</td>
<td>Picorna</td>
<td>RNA</td>
<td>No</td>
<td>25-30</td>
<td>5.03</td>
</tr>
<tr>
<td>Pseudorabies virus (PRV)</td>
<td>Herpes</td>
<td>DNA</td>
<td>Yes</td>
<td>120-200</td>
<td>>5.49</td>
</tr>
</tbody>
</table>

Conclusions and Future Plans
- Gamma irradiation reduces the risk of potential virus contamination of PLUS™ hPL without significantly impacting product composition or cell culture performance.
- Gamma irradiation is a preferred method for viral inactivation of PLUS™ hPL due to:
 - High penetration depth
 - Easily adopted into the GMP manufacturing process
 - Scalable

Future plans:
- Quantify inactivation of additional model viruses
- Assess whether PLUS™ hPL manufacturing process itself removes model viruses

Acknowledgements
- This work was funded by a Phase I SBIR from the National Institute of General Medical Sciences (grant # TR45GM133224-01)

Contact
Compass Biomedical
45 South Street, Suite 2
Hopkinton, MA 01748
www.compassbiomed.com